Syllabus

Semester 1:

1. Agricultural Heritage (New Course) 1(1+0)

Theory:

Introduction of Indian agricultural heritage; Ancient agricultural practices, Relevance of heritage to present day agriculture; Past and present status of agriculture and farmers in society; Journey of Indian agriculture and its development from past to modern era; Plant production and protection through indigenous traditional knowledge; Crop voyage in India and world; Agriculture scope; Importance of agriculture and agriculturel resources available in India; Crop significance and classifications; National agriculture setup in India; Current scenario of Indian agriculture; Indian agricultural concerns and future prospects.

2. Fundamentals of Soil Science 3(2+1)

Theory:

Soil as a natural body, Pedological and edaphological concepts of soil; Soil genesis: soil forming rocks and minerals; weathering, processes and factors of soil formation; Soil Profile, components of soil; Soil physical properties: soil-texture, structure, density and porosity, soil colour, consistence and plasticity; Elementary knowledge of soil taxonomy classification and soils of India; Soil water retention, movement and availability; Soil air, composition, gaseous exchange, problem and plant growth, Soil temperature; source, amount and flow of heat in soil; effect on plant growth, Soil reaction-pH, soil acidity and alkalinity, buffering, effect of pH on nutrient availability; soil colloids - inorganic and organic; silicate clays: constitution and properties; sources of charge; ion exchange, cation exchange capacity, base saturation; soil organic matter: composition, properties and its influence on soil properties; humic substances - nature and properties; soil organisms: macro and micro organisms, their beneficial and harmful effects; Soil pollution - behaviour of pesticides and inorganic contaminants, prevention and mitigation of soil pollution.

Practical :

Study of soil profile in field. Study of soil sampling tools, collection of representative soil sample, its processing and storage. Study of soil forming rocks and minerals. Determination of soil density, moisture content and porosity. Determination of soil texture by feel and Bouyoucos Methods. Studies of capillary rise phenomenon of water in soil column and water movement in soil. Determination of soil pH and electrical conductivity. Determination of cation exchange capacity of soil. Study of soil map. Determination of soil colour. Demonstration of heat transfer in soil. Estimation of organic matter content of soil.

3. Introductory Agrometeorology & Climate Change 2(1+1) Theory:

Meaning and scope of agricultural meteorology; Earth atmosphere- its composition, extent and structure; Atmospheric weather variables; Atmospheric pressure, its variation with height; Wind, types of wind, daily and seasonal variation of wind speed, cyclone, anticyclone, land breeze and sea breeze; Nature and properties of solar radiation, solar constant, depletion of solar radiation, short wave, longwave and thermal

radiation, net radiation, albedo; Atmospheric temperature, temperature inversion, lapse rate, daily and seasonal variations of temperature, vertical profile of temperature, Energy balance of earth; Atmospheric humidity, concept of saturation, vapor pressure, process of condensation, formation of dew, fog, mist, frost, cloud; Precipitation, process of precipitation, types of precipitation such as rain, snow, sleet, and hail, cloud formation and classification; Artificial rainmaking. Monsoon- mechanism and importance in Indian agriculture, Weather hazards - drought, floods, frost, tropical cyclones and extreme weather conditions such as heat-wave and cold-wave. Agriculture and weather relations; Modifications of crop microclimate, climatic normals for crop and livestock production. Weather forecasting- types of weather forecast and their uses. Climate change, climatic variability, global warming, causes of climate change and its impact on regional and national Agriculture.

Practical:

Visit of Agrometeorological Observatory, site selection of observatory, exposure of instruments and weather data recording. Measurement of total, shortwave and longwave radiation, and its estimation using Planck's intensity law. Measurement of albedo and sunshine duration, computation of Radiation Intensity using BSS. Measurement of maximum and minimum air temperatures, its tabulation, trend and variation analysis. Measurement of soil temperature and computation of soil heat flux. Determination of vapor pressure and relative humidity. Determination of dew point temperature. Measurement of atmospheric pressure and analysis of atmospheric conditions. Measurement of wind speed and wind direction, preparation of wind rose. Measurement, tabulation and analysis of rain. Measurement of open pan evaporation and evapotranspiration. Computation of PET and AET.

4. Agricultural Microbiology 2(1+1)

Theory:

History of microbiology: Spontaneous generation theory, Germ theory of disease, Protection against infections, Metabolism in bacteria: ATP generation, chemoautotrophy, photo autotrophy, respiration, fermentation, Bacteriophages: structure and properties of Bacterial viruses – Lytic and Lysogenic cycles: viroids, prions. Bacterial genetics; Gene Expression; Genetic recombination: transformation, conjugation and transduction, genetic engineering, Plasmids, episomes, genetically modified organisms. Soil Microbiology: Microbial groups in soil, microbial transformations of carbon, nitrogen, phosphorus and sulphur, Biological nitrogen fixation. Microflora of Rhizosphere and Phyllosphere microflora, microbes in composting.

Practical:

General instructions- Familiarization with instruments, materials, glassware etc., in a microbiology laboratory. Practice of aseptic methods- Evaluation of aseptic technique with Nutrient both tubes- Evaluation of aseptic technique with a Nutrient agar plate. Methods of sterilization and preparation of media, preparation of nutrient broth, nutrient agar plates, nutrient agar, slants and nutrient agar stabling- Sterilization of glassware by Dry heating- Sterilization of nutrient broth by Filtration. Planting methods for Isolation and Purification of bacteria Isolation of bacteria by Enrichment using Streak plate method- Checking of purity of a bacteria by staining methods and Biochemical tests- Morphological examination of bacteria by simple and Differential staining-

Different biochemical tests for identification of bacterial culture. Enumeration of bacteria- Enumeration of bacteria by Stain slide method- Enumeration of bacteria by Most Probable Number method- Enumeration of bacteria by Pour plate method and Spread plate method. Experiments in soil Microbiology- Study of rhizosphere and phyllosphere microflora- Isolation of Nitrogen fixing bacteria from soil – Isolation of Phosphate Solubilizing Microorganisms. Isolation and characterization of microorganisms in composts.

Suggested Reading:

- Rangaswamy, G, 1992. Agricultural Microbiology, PHI Publication
- N.S. Subbarao, 1999.Soil Microbiology Oxford and IBH publishing Co Pvt Ltd
- R.M. Aggarwal, 2013.Soil Microbiology Wisdom Press/Dominant Publishers and Distributers
- Singh and Purohit, 2008.Biofertilizer Technology, Agrobios
- Shalini Suri, Biofertilizers and Biopesticides, 2011. APH Publishing Corporation

5. Agricultural Informatics 3(2+1)

Theory

UNIT I

Introduction to computers; Anatomy of computers; Memory concepts, units of memory; Operating system, definition and types; Applications of MS-Office for creating, editing and formatting a document; Data presentation, tabulation and graph creation; Statistical analysis, mathematical expressions; Database, concepts and types, creating database; Uses of DBMS in Agriculture; Internet and World Wide Web (WWW), concepts, components and creation of web; HTML & XML coding.

UNIT II

Computer programming, concepts; Documentation and programme maintenance; Debugging programmes; Introduction to Visual Basic, Java, Fortran, C/ C++, etc.; Standard input/output operations; Variables and constants; Operators and expressions; Flow of control; Inbuilt and user defined functions; Programming techniques for agriculture. 239 Report of the ICAR Fifth Deans' Committee

UNIT III

e-Agriculture, concepts, design and development; Application of innovative ways to use information and communication technologies (IT) in agriculture; ICT for data collection; Formation of development programmes, monitoring and evaluation; Computer models in agriculture: statistical, weather analysis and crop simulation models - concepts, structure, input-output files, limitations, advantages and application for understanding plant processes, sensitivity, verification, calibration and validation; IT application for computation of water and nutrient requirement of crops; Computercontrolled devices (automated systems) for agriinput management; Smartphone mobile apps in agriculture for farm advice, market price, postharvest management, etc; Geospatial technology, concepts, techniques, components and uses for generating valuable agri-information; Decision support systems, taxonomy, components, framework. classification and applications in agriculture; Agriculture Information/Expert System; Soil Information Systems, etc. for supporting farm decisions; Preparation of contingent crop planning and crop calendars using IT tools.

Practical

Study of computer components, accessories; Practice of important DOS commands; Introduction of different operating systems such as windows, Unix, Linux; Creating files and folders; File management; Use of MS-WORD and MS Power point for creating, editing and presenting a scientific document; Handling of tabular data; Animation, video tools, art tool, graphics, template and designs; MS-EXCEL - Creating a spreadsheet, use of statistical tools, writing expressions, creating graphs, analysis of scientific data, handling macros; MS-ACCESS: Creating database, preparing queries and reports, demonstration of agri-information system; Introduction to World Wide Web (WWW) and its components, creation of scientific website, presentation and management agricultural information through web; Introduction of programming languages - Visual Basic, Java, Fortran, C, C++, and their components; Hands-on practice on writing small programmes; Hands-on practice on Crop Simulation Models (CSM); DSSAT/Crop-Info/ CropSyst/ Wofost; Preparation of input file for CSM and study of model outputs; Computation of water and nutrient requirements of crop using CSM and IT tools; Use of smart phones and other devices in agro-advisory and dissemination of market information; Introduction of Geospatial Technology; Demonstration of generating information important for agriculture; Hands on practice on preparation of Decision Support System.

Suggested Readings

- Gurvinder Singh, Rachhpal Singh & Saluja KK. 2003. Fundamentals of Computer Programming and Information Technology. Kalyani Publishers.
- Harshawardhan P. Bal. 2003. Perl Programming for Bioinformatics. Tata McGraw-Hill Education.
- Kumar A 2015. Computer Basics with Office Automation. IK International Publishing House Pvt Ltd.
- Maidasani D. 2016. Learning Computer Fundamentals, MS Office and Internet & Web Technology. 3rd edition, Laxmi Publications.

6. Introductory Biology (New) 2(1+1)

Theory

Introduction to the living world, diversity and characteristics of life, origin of life, Evolution and Eugenics. Binomial nomenclature and classification Cell and cell division. Morphology of flowing plants. Seed and seed germination. Plant systematicviz; Brassicaceae, Fabaceae and Poaceae. Role of animals in agriculture.

Practical

Morphology of flowering plants – root, stem and leaf and their modifications. Inflorence, flower and fruits. Cell, tissues & cell division. Internal structure of root, stem and leaf. Study of specimens and slides. Description of plants - Brassicaceae, Fabaceae and Poaceae.

7. Fundamentals of Horticulture 2(1+1)

Theory

Horticulture - Its definition and branches, importance and scope; horticultural and botanical classification; climate and soil for horticultural crops; Plant propagationmethods and propagating structures; Seed dormancy, Seed germination, principles of orchard establishment; Principles and methods of training and pruning, juvenility and flower bud differentiation; unfruitfulness; pollination, pollinizers and pollinators; fertilization and parthenocarpy; medicinal and aromatic plants; importance of plant bioregulators in horticulture. Irrigation – methods, Fertilizer application in horticultural crops.

Practical

Identification of garden tools. Identification of horticultural crops. Preparation of seed bed/ nursery bed. Practice of sexual and asexual methods of propagation including micro-propagation. Layout and planting of orchard. Training and pruning of fruit trees. Preparation of potting mixture. Fertilizer application in different crops. Visits to commercial nurseries/orchard.

8. Fundamentals of Plant Pathology 3(2+1) Theory

Introduction to the science of phytopathology, its objectives, scope and historical background. Classification of plant diseases, symptoms, signs, and related terminology. Parasitic causes of plant diseases (fungi, bacteria, viruses, phytoplasma, protozoa, algae and flowering parasitic plants), their characteristics and classification. Non-parasitic causes of plant diseases. Infection process. Survival and dispersal of plant pathogens. Plant disease epidemiology, forecasting and disease assessment. Principles and methods of plant disease management. Integrated plant disease management. Fungicides classification based on chemical nature, Commonly used fungicides, bactericides and nematicides.

Practical

Familiarity with general plant pathological laboratory and field equipments. Study of disease symptoms and signs and host parasite relationship. Identification and isolation of plant pathogens. Koch's postulates. Preparation of fungicidal solutions, slurries, pastes and their applications

9. Comprehension and Communication Skills in English 2(1+1)

Theory

War Minus Shooting- The sporting Spirit. A Dilemma- A layman looks at science Raymond B. Fosdick. You and Your English – Spoken English and broken English G.B. Shaw. Reading Comprehension, Vocabulary- Antonym, Synonym, Homophones, Homonyms, often confused words. Exercises to Help the students in the enrichment of vocabulary based on TOEFL and other competitive examinations. Functional grammar: Articles, Prepositions, Verb, Subject verb Agreement, Transformation, Synthesis, Direct and Indirect Narration. Written Skills: Paragraph writing, Precise writing, Report writing and Proposal writing. The Style: Importance of professional writing. Preparation of Curriculum Vitae and Job applications. Synopsis Writing. Interviews: kinds, Importance and process.

Practical

Listening Comprehension: Listening to short talks lectures, speeches (scientific, commercial and general in nature). Oral Communication: Phonetics, stress and intonation, Conversation practice. Conversation: rate of speech, clarity of voice, speaking and Listening, politeness & Reading skills: reading dialogues, rapid reading, intensive reading, improving reading skills. Mock Interviews: testing initiative, team spirit, leadership, intellectual ability. Group Discussions.

10. Elementary Mathematics (New) 2(2+0)

Theory

Straight lines : Distance formula, section formula (internal and external division), Change of axes (only origin changed), Equation of co-ordinate axes, Equation of lines parallel to axes, Slope-intercept form of equation of line, Slope-point form of equation of line, Two point form of equation of line, Intercept form of equation of line, Normal form of equation of line, General form of equation of line, Point of intersection of two st. lines, Angles between two st. lines, Parallel lines, Perpendicular lines, Angle of bisectors between two lines, Area of triangle and quadrilateral. Circle: Equation of circle whose centre and radius is known, General equation of a circle, Equation of circle passing through three given points, Equation of circle whose diameters is line joining two points (x1, y1) & (x2, y2), Tangent and Normal to a given circle at given point (Simple problems). Condition of tangency of a line y = mx + c to the given circle $x^2 + c$ $y_2 = a_2$. Differential Calculus : Definition of function, limit and continuity, Simple problems on limit, Simple problems on continuity, Differentiation of xn, ex, sin x & cos x from first principle, Derivatives of sum, difference, product and quotient of two functions, Differentiation of functions of functions (Simple problem based on it), Logarithmic differentiation (Simple problem based on it), Differentiation by substitution method and simple problems based on it, Differentiation of Inverse Trigonometric functions. Maxima and Minima of the functions of the form y=f(x)(Simple problems based on it). Integral Calculus : Integration of simple functions, Integration of Product of two functions, Integration by substitution method, Definite Integral (simple problems based on it), Area under simple well-known curves (simple problems based on it). Matrices and Determinants: Definition of Matrices, Addition, Subtraction, Multiplication, Transpose and Inverse up to 3rd order, Properties of determinants up to 3rd order and their evaluation.

11. NSS/NCC/Physical Education & Yoga Practices 2 (0+2)

Theory

Course aims at evoking social consciousness among students through various activities viz., working together, constructive and creative social work, to be skilful in executing democratic leadership, developing skill in programme development to be able for self employment, reducing gap between educated and uneducated, increasing awareness and desire to help sections of society

Following activities are to be taken up under the NSS course:

Introduction and basic components of NSS: Orientation y NSS programmes and activities y Understanding youth

Community mobilisation

Social harmony and national integration

Volunteerism and shramdan y Citizenship, constitution and human rights

Family and society

Importance and role of youth leadership

Life competencies y Youth development programmes

Health, hygiene and sanitation

Youth health, lifestyle, HIV AIDS and first aid

Youth and yoga

Vocational skill development

Issues related environment

Disaster management y Entrepreneurship development

Formulation of production oriented project

Documentation and data reporting

Resource mobilization

Additional life skills

Activities directed by the Central and State Government

All the activities related to the National Service Scheme course is distributed under four different courses viz., National Service Scheme I, National Service Scheme II, National Service Scheme III and National Service Scheme IV each having one credit load. The entire four courses should be offered continuously for two years. A student enrolled in NSS course should put in at least 60 hours of social work in different activities in a semester other than five regular one day camp in a year and one special camp for duration of 7 days at any semester break period in the two year. Different activities will include orientation lectures and practical works. Activities directed by the Central and State Government have to be performed by all the volunteers of NSS as per direction. **SYLLABUS Semester I**

Course Title: National Service Scheme I Introduction and basic components of NSS:

Orientation: history, objectives, principles, symbol, badge; regular programmes under NSS, organizational structure of NSS, code of conduct for NSS volunteers, points to be considered by NSS volunteers awareness about health NSS programmes and activities Concept of regular activities, special camping, day camps, basis of adoption of village/slums, conducting survey, analysing guiding financial patterns of scheme, youth programme/ schemes of GOI, coordination with different agencies and maintenance of diary Understanding youth Definition, profile, categories, issues and challenges of youth; and opportunities for youth who is agent of the social change Community mobilisation Mapping of community stakeholders, designing the message as per problems and their culture; identifying methods of mobilisation involving youth-adult partnership Social harmony and national integration Indian history and culture, role of youth in nation building, conflict resolution and peacebuilding Volunteerism and shramdan Indian tradition of volunteerism, its need, importance, motivation and constraints; shramdan as part of volunteerism Citizenship, constitution and human rights Basic features of constitution of India, fundamental rights and duties, human rights, consumer awareness and rights and rights to information Family and society Concept of family, community (PRIs and other community based organisations) and society